Este es un espacio dedicado a temas tecnológicos de actualidad e interés general, haciendo énfasis en la mecánica y la electrónica industrial.

viernes, 29 de abril de 2011

LA CELDA DE COMBUSTIBLE

El mes pasado nos referimos al improbable sustituto de los actuales motores de combustión interna como fuente de potencia primaria, el Stirling. El presente vamos a referirnos al candidato con mejores posibilidades: la celda de combustible. Es un mecanismo que transforma la energía química directamente en energía eléctrica, sin existir combustión. Similares a las baterías, las celdas a combustible están compuestas de dos electrodos (uno positivo, el cátodo y otro negativo, el ánodo) con un conductor electrolítico entre ellos. Mientras tanto, difiere de la batería por no haber necesidad de recarga, produciendo energía desde que el combustible sea suministrado.
Teóricamente se pueden utilizar varios tipos de combustibles. En la actual fase de las investigaciones, el hidrógeno es el que presenta un mejor rendimiento. El hidrógeno se puede generar del metanol, etanol, gas natural, propano y otras combustibles hidrocarbonados.

En ese mecanismo, en la medida que los electrodos tienen contacto con los gases reactivos (hidrógeno par el electrodo negativo y oxigeno o aire atmosférico para el electrodo positivo) existe una diferencia de potencial entre los mismos. Esta diferencia de potencial de la célula a circuito abierto es del orden 1.0 V, lo que ya genera energía.
Uno de los componentes específicos para la célula a combustible es la matriz, usualmente compuesta de carburo de silicio (SiC) y politetrafluoretileno (PTFE), que es lo que retiene el electrolito y se usa entre pares de electrodos difusores de gases (H2 y O2). Esas matrices deben ser lo suficientemente porosas para que el electrolito se quede permanentemente retenido, dejándolo apenas humedecido, y evitando de ese modo la mezcla de gas. Además, las matrices deben ser un aislante electrónico, tener una buena estabilidad química, tener buena conductividad ionica y poseer una espesura adecuada para minimizar la polarización ohmica entre los electrodos.

La resistencia de la matriz es una característica importante por ser la principal responsable de la inclinación de la curva de control corriente vs. potencial. Se han realizado investigaciones sobre el desempeño de células a combustible utilizándose mezclas de carburo de silicio, carburo de niobio y silicato de circonio, con el objetivo de mejorar el potencial de la célula a altas densidades de corriente.

También es importante observar que hay distintos tipos de células a combustible que son generalmente catalogadas de acuerdo con el electrolito utilizado. De ese modo tenemos las células de ácido fosfórico, de electrolito polimérico sólido, alcalina, de carbonatos fundidos y de óxido sólido.
Las células que se encuentran en la fase de investigación más desarrollada son las del ácido fosfórico. En este tipo de célula el electrolito usado es el ácido fosfórico (H3PO4) concentrado (95−98%), con una temperatura de operación entre 180 y 200o C., que no se ve afectado por el CO2, CO ( < 1%, pues en caso contrario el catalizador resulta envenenado) y otras impurezas. De ese modo, la célula puede utilizar como agente oxidante directamente el aire atmosférico, y puede operar con hidrógeno impuro producido a través de latransformación de otros combustibles. El CO2 formado como subproducto del proceso de transformación pasa a través de la célula sin comprometer su funcionamiento. Las reacciones de reducción de oxígeno y oxidación del hidrógeno se operan de forma más eficiente usando como catalizador el platino, disperso sobre polvo de carbono y conteniendo un adicionado de politetrafluoretileno (PTFE). Esas células se pueden disponibilizar en diferentes tamaños, que van desde pequeñas unidades portátiles de 250 wats a generadores capaces de suministrar 200 kilowatts de electricidad. De ese modo, células a combustible de ácido fosfórico están indicadas para edificios y vehículos pesados.

No hay comentarios:

Publicar un comentario